
J. Fluid Mech. (2001), vol. 443, pp. 231–236. Printed in the United Kingdom

c© 2001 Cambridge University Press

231

An exact form of Lilley’s equation with a velocity
quadrupole/temperature dipole source term
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There have been several attempts to introduce approximations into the exact form
of Lilley’s equation in order to express the source term as the sum of a quadrupole
whose strength is quadratic in the fluctuating velocities and a dipole whose strength
is proportional to the temperature fluctuations. The purpose of this note is to show
that it is possible to choose the dependent (i.e. the pressure) variable so that this type
of result can be derived directly from the Euler equations without introducing any
additional approximations.

1. Introduction
The subject of aeroacoustics was first put on a rational basis by Lighthill (1952,

1954) when he rearranged the Navier–Stokes (Euler) equations into the form of
a linear wave equation for a medium at rest with a quadrupole-type source term.
This source includes a contribution from a pressure/density term, which Lighthill
attributed to non-isentropic fluctuations in the flow. However, Lilley (1974, 1996) ar-
gued that isentropic fluctuations in a heated jet can actually produce a dipole source.
Comparison with experiment showed that this description yielded the correct sound
pressure levels at all Mach numbers and jet temperature ratios. This suggests that
Lilly’s result is real and not just a consequence of the theory. It implies, among other
things, that the temperature effect changes sign at a jet Mach number of 0.8.

In any event, the crucial step in Lighthill’s so-called acoustic analogy approach
amounts to assuming that the source term is in some sense known or that it can at
least be modelled in some approximate fashion. While this approach was remarkably
successful in predicting the gross features of the sound radiation from turbulent
air jets, the commercial aircraft industry soon realized that it needed a much more
sensitive tool with the capability of predicting how even relatively small changes in
the flow would affect the radiated sound. This motivated generations of researchers to
seek improvements in the Lighthill approach. Early efforts were focused on accounting
for mean flow interaction effects and there were a number of attempts to accomplish
this by applying ad hoc corrections to the original Lighthill predictions. A more
satisfying approach was the one adopted by Phillips (1960), Lilley (1974) and others,
which amounted to deriving inhomogeneous moving media wave equations for the
sound generation process.

The dominant part of the Lighthill source term is quadratic in the total flow
velocity, which can be decomposed into a mean plus a fluctuating component. The
source function therefore contains terms that are both linear and quadratic in the
fluctuating velocity components. Lilley (1974) argued that the linear terms, which
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are typically much larger than the quadratic quantities, do not actually radiate any
sound and should, therefore, not be included in the source function, since they would
tend to dominate over the much smaller quadratic terms which are the true sources
of sound. Including them would cause the sound source to be contaminated by the
small but inevitable errors resulting from the actual computation of these terms and
would thereby lead to inaccurate predictions of the sound field.

However, it turns out that the equation derived by Lilley has a complicated source
term (Colonius, Lele & Moin 1997), which is not of the physically expected form,
i.e. the sum of a quadrupole whose strength is quadratic in the fluctuating velocities
and a dipole whose strength is proportional to the temperature fluctuations. There
have been a number of attempts to obtain such a source term by introducing various
approximations into Lilley’s equation. The purpose of this note is to show that a source
of this type can be obtained by making an appropriate choice of the dependent (i.e.
the pressure) variable.

2. The Lilley equation and related background information
Lilley (1974) showed that for an ideal gas the Navier–Stokes equations

∂ρ

∂t
+

∂

∂xj
ρvj = 0, (2.1)

∂

∂t
ρvi +

∂

∂xj
ρvivj +

∂p

∂xi
=

∂

∂xj
eij , (2.2)

ρT
Ds

Dt
= eij

∂vi

∂xj
− ∂qi

∂xi
, (2.3)

where

s = cpln(p1/κ/ρ) (2.4)

denotes the entropy, cp denotes the specific heat at constant pressure, κ ≡ cp/cv
denotes the specific heat ratio, t denotes the time, x ≡ {x1, x2, x3} are Cartesian
coordinates, p denotes the pressure, ρ the density, v = {v1, v2, v3} the fluid velocity, eij
the viscous stress tensor, qi the heat flux vector and
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is the convective derivative, can be rearranged into the third-order wave equation (see
Goldstein 1976, p. 253)
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where
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c2 = κRT = κ p/ρ. (2.7)

is the squared sound speed, R is the gas constant, T is the temperature. Ψ represents
the effects of entropy fluctuations and fluid viscosity, which are generally considered
to be unimportant and are therefore neglected in much of the following discussion.
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The most general unidirectional transversely sheared mean flow that satisfies the
Euler equations is given by

vi = δi1U(x2, x3), p = po = constant, T = To(x2, x3). (2.8)

Subtracting this from the actual velocity and thermodynamic variables and moving
terms that are nonlinear in the resulting deviations to the right-hand side of (2.5)
leads to the inhomogeneous Pridmore-Brown (1957) equation
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is the Pridmore-Brown operator,

Do

Dt
≡ ∂

∂t
+U

∂

∂x1

, (2.11)

is the convective derivative based on the mean flow velocity and

c2 = κRTo. (2.12)

Notice that
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when p′ ≡ p− po � po, i.e. when the pressure fluctuations are small.
The detailed expression for Γ is given in Colonius et al. (1997). This result is still

exact but the source term is now very complicated and even more importantly does
not exhibit the quadrupole/dipole form originally proposed by Lighthill (1952) and
Lilley (1974). Lighthill emphasized the importance of properly exhibiting the correct
multipole order of the source term before introducing specific modelling assumptions
for this quantity and Colonius et al. (1997) showed the extreme sensitivity of the
predicted sound field to the detailed assumptions about the form of the source.

Goldstein (1984) carried out a systematic second-order asymptotic expansion and
introduced a new dependent variable to show that
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to within second-order accuracy. L̄o is defined in (2.10) and the new dependent
variable π′ is defined by

π′ ≡ Π + 1
2
Π2. (2.15)

Also,
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v′i ≡ vi − δi1U(x2, x3), (2.17)

and

(c2)′ ≡ κR(T − To) (2.18)

is the fluctuating sound speed (notice that the definition of Π differs from the one
used in Goldstein 1984).
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The source term in this equation is identical to the one that would be produced
by an externally applied force f′ = {f′1, f′2, f′3}, and is therefore properly interpreted
as a dipole. The first term in f′ represents the source that would be produced by the
fluctuating shear stress v′iv′j and can therefore be interpreted as a quadrupole. The
remaining term is a dipole source produced by the temperature fluctuations

T ′ ≡ T − To. (2.19)

The quadrupole source scales like v′2/l, where l is a characteristic length of the
turbulence and the second term scales like (U/c0)

2(v′2/l), and should therefore be
negligible compared to the first when the Mach number is small (Morfey, Szewczyk
& Tester 1978).

Colonius et al. (1997) showed that they could accurately reproduce the numerically
predicted sound field radiated from a low-Mach-number shear layer by substituting
the numerically computed values for

f′i ≈ − ∂

∂xj
v′iv
′
j (2.20)

andU into (2.14) and numerically solving the resulting linear equation for π′. However,
the Goldstein expansion, on which this result is based, is, at best, only locally valid,
since nonlinear effects eventually dominate the near-field disturbances and cause
the expansion to break down. And since the acoustic field depends on the global
solution to the problem, this approach does not lead to a rigorous derivation of
the basic acoustic analogy equation. Lilley (1999, 2000) recently proposed an exact
inhomogeneous Pridmore-Brown equation with a quadrapole type source term for
the special case of a constant shear–constant sound speed base flow.

3. The exact equation
The purpose of this note is to show that it is possible to obtain an exact rearrange-

ment of the Navier–Stokes (Euler) equations that leads to a third-order convective
wave equation with a simple source term that consists of a velocity quadrupole plus
a fluctuating temperature dipole by introducing an appropriate dependent variable to
represent the pressure fluctuations.

To this end, we neglect viscous and heat conduction effects (we indicate below how
the final result can be modified to include these effects by adding an addition term to
the source function) and substitute (2.4) into (2.3) and (2.7) to obtain

D
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Then multiplying (2.1) and (2.2) by p1/κ/ρ, differentiating by parts and using (2.7)
and (3.1) shows that
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where we have used (3.4) to simplify (3.5). Upon introducing the new dependent
variables
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and using (2.12) and (2.18), these become the inhomogeneous ‘linearized Euler
equations’
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where the externally applied force fi is now given by
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It is worth noting that the, now conventional, terminology ‘linearized Euler equations’
is somewhat misleading because (3.8) and (3.9) are, in fact, nonlinear, since the
nonlinear inhomogeneous terms are a priori unknown. In the more general viscous
case a monopole source term (p1/k/cp)Ds/Dt will appear on the right-hand side of
(3.8) and fi will contain the additional term (p1/k/cp)viDs/Dt+ (p1/k/ρ)∂eij/∂xj .

Equations (3.8) and (3.9) are identical in form to the linearized equations discussed
in Chapter 1 of Goldstein (1976), where it is shown (by taking the convective derivative
of the first equation and the divergence of the second, subtracting the results and
then using the second equation with i = 1 to eliminate the velocity fluctuation on the
left-hand side) that they can be rearranged into the inhomogeneous Pridmore-Brown
equation
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which is identical to (2.14) but with the pressure fluctuation π now given by (3.7) and
the externally applied force f now given by (3.10) rather than by (2.16). Notice that

π→ 1
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Finally, it is worth noting that (3.11) can be written as
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where Lo is the same as (2.10) but with c2 replaced by c2 = c2 + (c2)′ and
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is now a pure quadrupole source.
Aside from the definition of the pressure fluctuation, the only difference between

(2.14) and (3.11) is the appearance of the pressure fluctuation factor (1 + π) in the
quadrupole strength (1 + π)v′iv′j . Since π should be of the order of the turbulence
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intensity squared (which is typically small compared to unity) and since substituting
exact values of U and fi into (3.11) should yield exactly the same result as the direct
numerical solution for the sound field, this explains why Colonius et al. (1997) were
able to obtain such good agreement using the two different approaches.

Lighthill indicated that the basis of his acoustic analogy is the demonstration that
there is an exact analogy between the density fluctuations in any real flow and those
produced by a quadrupole source (or, as subsequently shown by Lilley 1974, 1996, a
dipole plus a quadrupole source) in an ideal stationary acoustic medium. The present
result shows that, aside from viscous and heat conduction effects, there is an exact
analogy between the (p/po)

1/k fluctuations in any real flow and the corresponding
linear fluctuations in this quantity produced by a quadrupole plus a temperature
dipole source in an arbitrary ideal transversely sheared mean flow. It is important
to note that this does not imply that (3.11), or for that matter any other ‘acoustic
analogy’ equation, can provide an unambiguous identification of the sources. This
result is only useful when the base flow bears some resemblance to the actual fluid
motion and, even then, can only serve as a guide for identifying and ultimately
modelling the true sources of sound.

The author wishes to thank Professor Jeoffrey Lilley for his constructive comments
on the manuscript and Dr Stewart Leib for commenting on the draft.
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